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EXPERIMENTS ON AN ULTRA~STABLE

GAS JOURNAL BEARING

ABSTRACT 10|é/‘7L

Shallow grooving in a herringbone pattern has been proposed to enhance the

stability of both gas and liquid lubricated journal bearings. It has been
shown theoretically that this possibility is particularly advantageous for

unloaded journal bearings.

This paper describes corroborating experiments. The experiments included the
running of an unloaded bearing up to speeds of 60,000 rpm and the collection
of steady staté load-displacement attitude angle data at intermediate speeds
up to and including 60,000 rpm. No sign of bearing whirl instability was de-

tected. There was good correlation between theoretical and experimental data.

Design data is included as a guide for future designs. le&ﬁijt{frv
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INTRODUCTION

In recent years during the development of gas bearing theory two phenomena

became apparent: the plain, lightly-loaded journal bearing is unstable (Ref. 1)
and the load capacity of a plain journal bearing approaches an asymptotic value
with increasing speed (Ref. 2). Many theoretical and experimental investigators
have verified the existence of these problems and have suggested a variety of so-
lutions. In some instances these solutions proved very successful. For example,
the application of an external load to a lightly-loaded bearing tends to raise
the whirl threshold (Ref. 3). Also, machining axial grooves into a bearing raises
the whirl threshold slightly at the expense of a decrease in the overall load
capacity of the bearing (Ref. 4,5). Probably the most successful solution to the
problem to date is the utilization of the tilting pad bearing (Ref. 6) which,
when properly designed, possesses both anti-whirl properties and high stiffness
characteristics .However, the bearing power loss can increase two-fold over the
plain bearing, and the mechanical design of the tilting-pad bearing system is more

difficult and costly.

Recently the herringbone-groove rooved) iournal bearing has been
studied both theoretically and experimentally (Ref. 7,8 and 9)., Ref. 7 shows the
completely-grooved bearing has a higher load capacity than the plain bearing at
moderate and high values of A. Ref. 8 shows that the bearing has high stability
characteristics. Ref. 9 gives a theoretical treatment of the completely-grooved
bearing for the incompressible case and a presentation of some experimental results

for bearing numbers as high as 4.8. Good correlation of theory and experiment

was found.

This paper presents the results of experiments on the partially-grooved journal



bearing and compares these experimental results with the theoretical results

obtained from the analysis published in Ref. 7, 8. The partially-grooved bear-

ing was selected for study because it is the optimum design for obtaining maximum
radial stiffness. The analysis given in Ref. 8 indicates that the grooved bearing
will be stable up to a certain speed for a given bearing geometry and rotor mass.

In Ref. 7 it is shown that the load capacity of this bearing is not limited as is
that of a plain journal bearing. These facts have been verified by the experi-

ments reported herein, i.e., no sign of bearing instability was detected when an
unloaded bearing was run up to a speed of 60,000 rpm. The measured load-displacement

attitude angle characteristics were found to be in good agreement with theory.

The spiral-grooved journal bearing seems to possess the characteristics that make
it a top candidate for all bearing system designs. For this reason design data

is included in this paper for future design references.



EXPERIMENTAL APPARATUS AND INSTRUMENTATION

The basic elements of the test apparatus are shown in Figs. 1 through 3. Figure 1
depicts a 1.5 in. diameter journal, 8.75 in. long with 16 turbine blades on one
end. The shaft also has two areas 1.5 in. long with spiral grooving. These two
partially-grooved areas running with smooth sleeves comprise the test bearings.
The bearing span is 5.5 in. The shaft may be lifted for start-up and shut-down
by a hydrostatic lifter-loader bearing, Fig. 2, located between the two test
bearings. This deep-pocketed partial-arc hydrostatic bearing is also used to

load the rotating shaft upward. A nozzle ring in conjunction with the 16 blades
on the shaft comprise an impulse-type drive turbine. Figure 3 provides an overall
view of the test apparatus including the housing, housing rest and end plates.
Each end plate has a carbon button, with one button being adjustable. These
buttons provide a means for centering the shaft axially and for carrying a slight

thrust load when necessary.

The shaft was driven to speeds of 60,000 rpm by the turbine drive. Thespeed was
measured by a reflective method, i.e., an optical probe picks up the fluctuations
of an alternately painted surface and the signal is indicated on a frequency

meter, or counter.

The shaft displacement was measured by two horizontal and two vertical capacitance
probes. Each test bearing has a set of two probes located inboard from the bear-
ing itself, and méunted in the housing. The capacitance probes present a very
clear picture on the oscilloscope and thus the total reading error is estimated

at 10 microinch,




The lifter-loader bearing was calibrated by measuring the pocket pressure required
to lift a certain dead-weight load while the shaft was non-rotating. Thus, the
rotating shaft could be loaded by the hydrostatic bearing with a known load. Since
the load-pressure calibration curve is an average curve obtained from a series

of preliminary calibration tests, the load is estimated to be accurate within

4 percent. This calibration curve is shown in Fig. 4.

The entire test apparatus, including shaft and sleeves are made from AISI TY416
stainless steel. The sleeves have a 200p-in. electrofilm coating on the bearing
surface. The test bearings are designed for maximum radial stiffness at a bearing
number, A = 20. The optimum proportions for this bearing with an L/D = 1 and with

grooves on the rotating shaft are:

afa = 0.54
g “r
h/h = 2.33
g r
B = 25°
and § = 0.46.

In order to provide the most theoretically perfect bearing, an infinite number of
grooves is required. Because of the difficulty and cost of manufacturing spiral
grooves, a compromise was made using thirty-six grooves. These grooves are of

width .021 in. and axial length 0.396 in. The groove depth is between 500 to

600 p-in. At zero speed the radial clearance is 495 p-in. At 60,000 rpm the

radial clearance has been calculated to be 435 p-in. due to centrifugal growth. The
sleeves were ground in line and have been measured to be less than 50 p-in.out of line

on the I.D. The shaft has a 30 p-in. T.I.R. and an axial taper of 90 p-in. between




bearings. On the other hand, the sleeves are tapered 90u-in. in the opposite
direction of the shaft taper. The shaft was precision balanced to allow un-

balance loading on the bearings of only fractions of a pound at 60,000 rpm.

EXPERIMENTS

Two particular experiments were performed:

a) load-displacement tests

and b) unloading of bearing to observe onset of stability.

The first series of tests provided steady state data at intermediate speeds up
to 60,000 rpm. The second tests in which the bearings were completely unloaded
to purposely try to cause a whirl instability showed positive results for the
bearings, i.e. the bearings showed no sign of becoming unstable. Theoretically
this bearing rotor system should be stable well above 60,000 rpm. At this speed,
which corresponds to A " 20, the actual mass parameter is 0.2 (The critical

mass parameter is 0.68 at 60,000 rpm).

THEORETICAL RESULTS

Fig. 5 shows typical comparisons of the total-load capacity and the radial stiffness
versus bearing number between a lightly-loaded grooved journal (grooved member
rotating, optimum proportions for A = 20) and a lightly-loaded plain journal
bearing. The plain journal bearing has a total load capacity higher than the
grooved bearing for A up to eight. At A = 8 both bearings are equal in total load
capacity. For higher values of A the grooved bearing has a total load capacity
higher than the plain journal bearing. The bearings are equal in radial stiffness

at A approximately equal to "1.5" and "6". At values of A less than "1.5" the
grooved bearing has a higher radial stiffness because its attitude angle is lower

than that of the plain bearing. The grooved bearing has an attitude angle



of 70 deg. at A » O while the plain bearing has an attitude angle of

90 deg. at A > 0. At values of A greater than "6" the grooved bearing has
a higher radial stiffness than the plain bearing, which is already starting

to level off to its asymptotic value of w/2.

Fig. 6 shows a stability map for the particular grooved bearing tested. A corre-
sponding plot for an unloaded plain bearing does not exist, i.e., the plain
bearing is unstable at all speeds. Notice that there are essentially two

branches to this plot. The first branch, corresponds to the fractional-frequency
whirl phenomenon, the second branch to pneumatic hammer. Along the first branch,
the "critical mass parameter" decreases as A increases to a value of approxi-
mately 22, goes through a minimum point, and then increases until A ~ 30. At

A~ 30 the bearing is essentially infinitely stable. For A > 30, on this branch
the "critical mass parameter''decreases rapidly and monotonically until A v 42,
Beyond A v 42 the "pneumatic hammer" instability becomes predominant. (Instability
occurs at a lower value of the critical mass.) This stability map is typical

of grooved journal bearings. The criteria used in preparation of this data is based

on the works of Ref. 8 and is summarized in the Appendix of this paper.

Fig. 7 represents a design chart of theoretical data for the design of the spiral-
grooved journal bearing. This is included for future bearing design. It should be
emphasized that the grooving proportions indicated on this chart are those pro-
portions which give maximum radial stiffness at A = 20, for a bearing with an

L/D = 1 and the grooved member rotating. If one is designing at other values of

A and wishes to have the maximum radial stiffness possible at that particular

A value (other than 20); then the grooving parameters would have to be changed
accordingly. However, one should not expect more than approximately 207 improvement
by varying the parameters. It is more important that the '"number of grooves' be

as large as possible in order to have the bearing behave as indicated by this

design chart. Say, A/2N < 1.



If the design is to have the smooth member rotating, the steady state data
of Fig. 7 can be used directly with little error. However, a stability map for
this bearing has been prepared and is presented as Fig. 8. The method used for

preparing this map is given in the Appendix.

EXPERIMENTAL-THEORETICAL DATA COMPARISON

Fig. 9 shows an experimental-theoretical data comparison of total radial stiffness
for the two grooved bearings tested at various speeds to 60,000 rpm. Fig. 10 shows
a comparison of the load at various speeds, and Fig. 11 gives an attitude angle
comparison of theoretical and experimental data. As these curves are self-explana-
tory, no discussion is necessary. However, one point should be mentioned; the
correlation is extremely sensitive to an accurate knowledge of the radial clearance.

It is the most sensitive parameter and causes the greatest changes.

Fig. 12 gives a comparison of the shaft orbit size with speed. Fig. 13 shows a

rt

similar compariscn at the same speeds but with a more precisely balanced shaft.
Notice the importance of shaft balancing for high-speed running. Fig. 14 shows

a comparison of the orbit size at both ends of the shaft at speeds of 50,000 and
60,000 rpm. And finally, Fig. 15 can be studied in conjunction with Fig. 14 to
show the effect of extra-fine balancing. The main point that these orbit pictures
bring out is that the shaft has not gone through any rigid body critical speed on
its way up to 60,000 rpm. In other words, by rebalancing the shaft, the orbit
sizes have been reduced, and there is no apparent enlarging and decaying of orbit

size with increasing speed. On these photographs the total diametral clearance

(radial play) of the bearing is represented by approximately 8.5 cm.



DISCUSSION AND CONCLUSIONS

Theoretically the spiral-grooved journal bearing appears to have excellent steady-
state and stability characteristics. These characteristics have been observed and
verified by experiment. Essentially the characteristics could be summarized as
follows: the spiral-grooved journal bearing has a load capacity greater than the
plain journal at A > 8, power loss less than the plain journal, and stability equi-
valent to the tilting -pad bearing. This bearing has two drawbacks. However, these
will be overcome with time. They are the initial cost to set up a groove pattern,

and the necessity to design a bearing-shaft alignment device.

A 1,5 in, diameter shaft has been driven by an air impulse-type turbine to 60,000

rpm. The shaft was mounted on two spiral-grooved, gas journal bearings, with an L/D=1
and a radial clearance at zero speed of 495u-inch. The ambient gas was air at S.T.P,.
The bearings were loaded to a maximum of 12 1bs each at 40,000 rpm and 40 lbs each

at 60,000 rpm. The eccentricity ratios at these conditions are respectively 0.28

and 0.63. Neither the loaded nor the unloaded bearing showed any signs of instability.

A good correlation of theoretical and experimental data was found.

ing-rotor system was designed from the theoretical design
charts included in this report. It was designed to be a stable bearing system with

all rigid body criticals above the top speed. The principal goals of these experiments
were to collect steady-state data for comparison with theory and to prove by obser-
vation that the bearing-rotor system was stable for all speeds to 60,000 rpm. These

goals were reached.




RECOMMENDATIONS

1.

Extend theoretical steady-state data, and stability criteria if necessary, to

large eccentricity ratios.

2. Design a spiral-grooved bearing-rotor system such that it would become
unstable at a reasonable speed in order to permit experimental verification
of the condition of marginal stability,

3. Collect large eccentricity experimental data and compare it with the theory
developed in "1" above.

4. Determine theoretically and experimentally the critical speed behavior of this
bearing.

5. Place the spiral-grooved bearing-rotor system on a shake table and observe the
effects of dynamic loading at various frequencies and "g" levels.
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Meaning

Groove width, in.

Ridge width, in.

Radial clearance, in.

Shaft diameter, in.

Radial displacement, in.

Frequency ratio of shaft whirl speed to shaft rotating speed, corre-
sponding to the fractural frequency whirl phenomenon.

Gravitational constant, in./secz.

Groove clearance, in.

Ridge clearance, in.

Radial stiffness, 1b/in.

Tangential stiffness, 1b/in.

Critical mass of rotor per bearing. 1b.sec? /in.
Critical weight of shaft per bearing, 1b.

Number of grooves per bearing.

Ambient pressure, psia.

Shaft radius, in.

Friction torque, in.lb.

Bearing load, 1b.

Total bearing load for two bearings, 1b.

Ratio of groove portion of bearing to L.



Q

B8

r

e = e/C

A=§M(5}Z
p, G

H

¢

w

Whirl ratio.

Spiral angle, deg.

Groove clearance to ridge clearance ratio.
Eccentricity ratio.

Bearing number.

Absolute viscosity, lb.sec/in2.

Attitude angle, deg.

Circular frequency of shaft, rad/sec.
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APPENDIX

STABILITY CRITERIA FOR LIGHTLY-LOADED JOURNAL BEARINGS POSSESSING ROTATIONAL

SYMMETRY *

The criterion requires an examination of the journal bearing steady-whirl character-
istics. Accordingly, a critical mass of the rotor for the onset of instability may
be determined at the points of neutral stability. Neutral stability points are such
whirl frequency points (ao') where the attitude angle (4) or tangential force

CRe

. ' vanishes and the centrifugal force due to whirl is exactly in equilibrium
PaLD

CKy
with the radial force component

). Furthermore, an infinitesimal increase of the

p.LD
a
rotor mass from its critical magnitude (mo) at the neutral stability point, would

CK
make the bearing-rotor system unstable if the derivative of p LD with respect to
a

a’ is negative, and conversely. A typical plot of a spiral-grooved journal bearing

steady whirl characteristics is shown in Fig. 16.

The critical mass of the rotor is determined from the equation

e e e e e s e e e e e e e e . (AD

8
]

i Rp CK

Mc/g (C\° a, _ 36 1 r
—— —— = . " - . . . - . - . . . Aoz
LD {R) \ uz} A (a'oizr paLD 4.2

According to Ref. 7, also as shown in Fig. 16, the steady whirl data for a spiral-
grooved journal bearing with smooth member rotating can be prepared from the data
obtained for a bearing in which the grooved member is rotating, and vice-versa. Given
the data for one type bearing, the data for the other type bearing is obtained as

follows: the radial stiffness is the exact mirror image with the pivot point being

*
This appendix is a precis of the stability theorem previously given in Ref. 8.
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o' = 0.5, and the tangential stiffness is the negative mirror image with the pivot

point being o' = 0.5, i.e. the mirror image, plus an inversion about a' = 0.5.

Examples (using Fig., 16)

a CKI‘ Mc/g
o
paLD LD

Grooved
Member 0.445 1.505
Rotating
Smooth
Member 0.555 1.505

Rotating

0.684

0.440

Slope

neg.

neg.

Stability
Obtained
With

M<M

M<M
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Fig. 1 Shaft-Illustrating Spiral Grooving and Turbine Blades
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Fig. 3 Display of Housing, Housing Mounts, and End Plates
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5,000 RPM

30,000 RPM 40,000 RPM

Comparison of Orbit Sizes: Coarse Balancing

Fig. 12 Comparison of Orbit Sizes - Coarse Shaft Balancing (5,000 to 40,000 rpm)




L

30,000 RPM 40,000 RPM

Comparison of Orbit Sizes: Fine Balancing

Fig. 13  Comparison of Orbit Sizes - Fine Shaft Balancing (5,000 to 40,000 rpm)




THRUST END TURBINE END
50,000 RPM 50,000 RPM

THRUST END TURBINE END
60,000 RPM 60,000 RPM

Comparison of Orbit Sizes: Fine Balancing

Fig. 14 Comparison of Orbit Sizes - Fine Shaft.Balancing (50,000 and
60,000 rpm)




50,000 RPM 60,000 RPM

Orbit Sizes: Extra Fine Balancing

Fig. 15 Comparison of Orbit Sizes - Extra Fine Shaft Balancing (50,000 and 60,000 rpm)
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